IDLWAVE User Manual

Major Emacs mode and shell for IDL. and WAVE/CL files
Edition 4.7, December 2000

by Carsten Dominik

This is edition 4.7 of the IDLWAVE User Manual for IDLWAVE version 4.7, December
2000.

Copyright (©) 1999, 2000, 2001 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover texts being “A
GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled “GNU Free Documentation License” in the Emacs manual.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

Table of Contents

1 Introduction..................... 1
2 IDLWAVE in a Nutshell.................... 2
3 Getting Started (Tutorial).................. 3
3.1 Lession I: Development Cycle 3

3.2 Lession II: Customization 5

3.3 Lession III: Library Catalog..................... 7

4 The IDLWAVE Major Mode................ 8
4.1 Code Formatting, 8

4.1.1 Code Indentation, 8

4.1.2 Comment Indentation........................... 8

4.1.3 Continuation Lines and Filling................... 9

4.1.4 Syntax Highlighting............................ 10

42 RoutineInfo........... 10

4.3 Online Help...... ..., 12

4.4 Completioncooiii 14

4.5 Routine SOUrce.............uiiuiiieieiieeaan.. 16

4.6 Resolving Routines.............. 16

4.7 Code Templates....... ... 16

4.8 ACHIONS . ..ttt 17

4.8.1 Block Boundary Check......................... 17

4.8.2 Padding Operators.................cooiiiin... 18

4.83 CaseChangescoviiiiiiiiiiiinnn.. 18

4.9 Documentation Header 19

4.10 Motion Commandsciiiiiiiniiin.. 19

4.11 Miscellaneous Optionsoviieriinennnaa.. 20

5 The IDLWAVE Shell...................... 21
5.1 Starting the Shell 21

5.2 Using the Shell........ 22

5.3 Debugging IDL Programs............................... 23

5.3.1 Compiling Programs 24

5.3.2 Breakpoints and Stepping 24

5.3.3 Examining Variables........................ ... 25

6 Installation............................... 27
6.1 Installing IDLWAVE. 27

6.2 Installing Online Help 27

6.3 Upgrading from the old ‘idl.el’file..................... 27

7 Acknowledgement 28
Appendix A Sources of Routine Info......... 29
A.1 Routine Definitionscooiiiierineennn... 29
A.2 Routine Information Sources............................ 29
A.3 Library Catalogcooieri i 30
A.4 Load-Path Shadows............ 31
A5 Documentation Scan.................oiiiiiiiii... 31
Appendix B Configuration Examples 32

ii

Chapter 1: Introduction 1

1 Introduction

IDLWAVE is a package to support editing command files for the Interactive Data Lan-
guage (IDL), and for running IDL as an inferior shell. It also can be used for WAVE/CL
command files, but the support for these is limited. Note that this package has nothing to
do with the Interface Definition Language as part of the Common Object Request Broker
Architecture (CORBA).

IDLWAVE is the successor to the ‘idl.el’ and ‘idl-shell.el’ files written by Chris
Chase. The modes and files had to be renamed because of a name space conflict with
CORBAs idl-mode, defined in Emacs in the file ‘cc-mode.el’. If you have been using the
old files, check Section 6.3 [Upgrading from idl.el], page 27 for information on how to switch.

IDLWAVE consists of two parts: A major mode for editing command files (idlwave-
mode) and a mode to allow running the IDL program as an inferior shell (idlwave-shell-
mode). Both modes work closely together and form a complete development environment.

Here is a brief summary of what IDLWAVE does.
e Code indentation and formatting.
e Font-lock support on three levels.

e Display of calling sequence and keywords of more than 1000 IDL routines and any
routines in your local IDL library.

e Name space conflict search.

e Fast context-sensitive online help.

e Context sensitive completion of routine names and keywords.

e Insertion of code templates.

e Actions to enforce coding standards during typing.

e Block structure check.

e Support for ‘imenu’ (Emacs) and ‘func-menu’ (XEmacs).

e Documentation support.

e Running IDL as inferior process.

e Shell with history search, command line editing and completion.
e Compilation, execution and debugging of programs directly from the source buffer.
e Examining expressions with a mouse click.

In this manual, each section contains a list of user options related to the subject. Don’t
be confused by the shear number of options available — in most cases the default settings
are just fine. The variables are listed here to make sure you know where to look if you
want to change things. For a full description of what a particular variable does and how

to configure it, see the documentation string of that variable. Some configuration examples
are also given in the appendix.

Chapter 2: IDLWAVE in a Nutshell 2

2 IDLWAVE in a Nutshell

Editing IDL Programs

TAB Indent the current line relative to context.

M-C-\ Re-indent all lines in the current region.

M-(RET) Start a continuation line. Or split the current line at point.

M-q Fill the current comment paragraph.

C-c? Display calling sequence, keywords of the procedure/function call at point.
M-7 Context sensitive online help.

M-(TAB) Complete a procedure name, function name or keyword in the buffer.
C-c C-1 Update IDLWAVE’s knowledge about functions and procedures.

C-c C-v Find the source code of a procedure/function.

C-c C-h Insert a standard documentation header.

C-c C-m Insert a new timestamp and history item in the documentation header.

Running the IDLWAVE Shell, Debugging Programs

C-c C-s Start IDL as a subprocess and/or switch to the interaction buffer.

M-p Cycle back through IDL command history matching command line input.
M-n Cycle forward.

M—-(TAB) Complete a procedure name, function name or keyword in the shell buffer.

C-c C-d C-c Save and compile the source file in the current buffer.
C-c C-d C-x Goto next syntax error.

C-c C-d C-b Set a breakpoint at the current source line.

C-c C-d C-d Clear the current breakpoint.

C-c C-d C-p Ask IDL to print the value of the expression near point.

4

Commonly used Settings in ‘.emacs’

;3 Change the indentation preferences

(setq idlwave-main-block-indent 2 ; default O
idlwave-block-indent 2 ; default 4
idlwave-end-offset -2) ; default -4

;; Pad some operators with spaces
(setq idlwave-do-actions t
idlwave-surround-by-blank t)
;3 Syntax Highlighting
(add-hook ’idlwave-mode-hook ’turn-on-font-lock)
;; Automatically start the shell when needed
(setq idlwave-shell-automatic-start t)
;3 Bind debugging commands with CONTROL and SHIFT modifiers
(setq idlwave-shell-debug-modifiers ’(control shift))
;; Where are the online help files?
(setq idlwave-help-directory "~/.idlwave")

Chapter 3: Getting Started (Tutorial) 3

3 Getting Started (Tutorial)

3.1 Lession I: Development Cycle

The purpose of this tutorial is to guide you through a very basic development cycle with
IDLWAVE. We will type a simple program into a buffer and use the shell to compile, debug
and run this program. On the way we will use the most important commands in IDLWAVE.
Note however that there is much more funtionality available in IDLWAVE than we cover
here, and it will pay off greatly if eventually you go further and read the whole manual.

I assume that you have access to Emacs or XEmacs with the full IDLWAVE package
including online help (see Chapter 6 [Installation], page 27). I also assume that you are
familiar with Emacs and can read the nomenclature of key presses in Emacs (in particular,

C stands for and M for (often the key carries this functionality)).
Open a new source file by typing
C-x C-f tutorial.pro

A buffer for this file will pop up, and it should be in IDLWAVE mode. You can see this
by looking at the mode line, just below the editing window. Also, the menu bar should
contain entries ‘IDLWAVE’ and ‘Debug’.

Now cut-and-paste the following program, also available as ‘tutorial.pro’ in the IDL-
WAVE distribution.

function daynr,d,m,y

;; compute a sequence number for a date

;35 works 1901-2099.

if y 1t 100 then y = y+1900

if m le 2 then delta = 1 else delta =0

ml = m + deltax12 + 1

yl = y * delta

return, d + floor(m1%*30.6)+floor(y1*365.25)+5
end

function weekday,day,month,year
;; compute weekday number for date
nr = daynr(day,month,year)
return, nr mod 7

end

pro plot_wday,day,month
;; Plot the weekday of a date in the first 10 years of this century.
years = 2000,+indgen(10)
wdays = intarr(10)
for i=0,n_elements(wdays)-1 do begin
wdays[i] = weekday(day,month,years([i])
end
plot,years,wdays,YS=2,YT="Wday (O=sunday)"
end

Chapter 3: Getting Started (Tutorial) 4

The indentation probably looks funny, since it’s different from the settings you use, so use
the key in each line to automatically line it up (or more quickly select the entire buffer
with C-x h followed by M-C-\). Notice how different syntactical elements are highlighted in
different colors, if you have set up support for font-lock.

Let’s check out two particular editing features of IDLWAVE. Place the cursor after the
end statement of the for loop and press SPC). IDLWAVE blinks back to the beginning of
the block and changes the generic end to the specific endfor automatically. Now place the
cursor in any line you would like to split into two and press M-RET). The line is split at
the cursor position, with the continuation ‘$’ and indentation all taken care of. Use C-/ to
undo the last change.

The procedure plot_wday is supposed to plot the weekday of a given date for the first
10 years of the 21st century. I have put in a few bugs which we are going to fix now.

First, let’s launch the IDLWAVE shell. You do this with the command C-c C-s. The
FEmacs window will split and display IDL running in a shell interaction buffer. Type a few
commands like print, !PT to convince yourself that you can work there like in an xterminal,
or the IDLDE. Use the arrow keys to cycle through your command history. Are we having
fun now?

Now go back to the source window and type C-c C-d C-c to compile the program. If you
watch the shell buffer, you see that IDLWAVE types ‘.run tutorial.pro’ for you. But the
compilation fails because there is a comma in the line ‘years=...’. The line with the error
is highlighted and the cursor positioned at the error, so remove the comma (you should only
need to hit Delete!). Compile again, using the same keystrokes as before. Notice that the
file is saved for you. This time everything should work fine, and you should see the three
routines compile.

Now we want to use the command to plot the weekdays for January 1st. We could
type the full command ourselves, but why do that? Go back to the shell window, type
‘plot_’ and hit (TAB). After a bit of a delay (while IDLWAVE initializes its routine info
database), the window will split to show all procedures it knows starting with that string,
and plot_wday should be one of them. Saving the buffer was enough to tell IDLWAVE
about this new routine. Click with the middle mouse button on plot_wday and it will be
copied to the shell buffer, or if you prefer, add ‘w’ to ‘plot_’ to make it unambiguous, hit
(TAB), and the full routine name will be completed. Now provide the two arguments:

plot_wday,1,1

and press RET). This fails with an error message telling you the YT keyword to plot is
ambiguous. What are the allowed keywords again? Go back to the source window and put
the cursor into the ‘plot’ line, and press C-c 7. This pops up the routine info window for
the plot routine, which contains a list of keywords, and the argument list. Oh, we wanted
YTITLE. Fix that up. Recompile with C-c C-d C-c. Jump back into the shell with C-c C-s,
press the arrow to recall the previous command and execute again.

This time we get a plot, but it is pretty ugly — the points are all connected with a line.
Hmm, isn’t there a way for plot to use symbols instead? What was that keyword? Position
the cursor on the plot line after a comma (where you’d normally type a keyword), and hit
M-(Tab). A long list of plot’s keywords appears. Aha, there it is, PSYM. Middle click to insert
it. An ‘=’ sign is included for you too. Now what were the values of PSYM supposed to
be? With the cursor on or after the keyword, press M-? for online help (alternatively, you

Chapter 3: Getting Started (Tutorial) 5

could have right clicked on the colored keyword itself in the completion list). The online
help window will pop up showing the documentation for the PYSM keyword. Ok, let’s use
diamonds=4. Fix this, recompile (you know the command by now: C-c C-d C-c, go back to
the shell (if it’s vanished, you know the command to recall it by now: C-c C-s) and execute
again. Now things look pretty good.

Lets try a different day - how about April fool’s day?
plot_wday,1,4

Oops, this looks very wrong. All April fool’s days cannot be Fridays! We've got a bug
in the program, perhaps in the daynr function. Lets put a breakpoint on the last line
there. Position the cursor on the ‘return, d+...’ line and press C-c C-d C-b. IDL sets
a breakpoint (as you see in the shell window), and the line is highlighted in some way.
Back to the shell buffer, re-execute the previous command. IDL stops at the line with the
breakpoint. Now hold down the SHIFT key and click with the middle mouse button on
a few variables there: ‘d’, ‘y’, ‘m’, ‘y1’, etc. Maybe 4 isn’t the correct type. CONTROL-
SHIFT middle-click on it for help. Well, it’s an integer, so that’s not the problem. Aha,
‘y1’ is zero, but it should be the year, depending on delta. Shift click ‘delta’ to see that
it’s 0. Below, we see the offending line: ‘yl=y*delta...’ the multiplication should have
been a minus sign! So fix the line to

yl =y - delta
Now remove all breakpoints: C-c C-d C-a. Recompile and rerun the command. Every-

thing should now work fine. How about those leap years? Change the code to plot 100
years and see that every 28 years, the sequence of weekdays repeats.

3.2 Lession II: Customization

Emacs is probably the most customizable piece of software available, and it would be
a shame if you did not make use of this and adapt IDLWAVE to your own preferences.
Customizing Emacs or IDLWAVE means that you have to set Lisp variables in the ‘.emacs’
file in your home directory. This looks scary to many people because of all the parenthesis.
However, you can just cut and paste the examples given here and work from there.

Lets first use a boolean variable. These are variables which you turn on or off, much like
a checkbox. A value of ‘t’ means on, a value of ‘nil’ means off. Copy the following line
into your ‘.emacs’ file, exit and restart Emacs.

(setq idlwave-reserved-word-upcase t)

When this option is turned on, each reserved word you type into an IDL source buffer
will be converted to upper case when you press or right after the word. Try it
out! ‘if’ changes to ‘IF’, ‘begin’ to ‘BEGIN’. If you don’t like this behavior, remove the
option again from your ‘.emacs’ file.

Now I bet you have your own indentation preferences for IDL code. For example, I like
to indent the main block of an IDL program a bit, different from the conventions used by
RSI. Also, I'd like to use only 3 spaces as indentation between BEGIN and END. Try the
following lines in ‘. emacs’

(setq idlwave-main-block-indent 2)
(setq idlwave-block-indent 3)
(setq idlwave-end-offset -3)

Chapter 3: Getting Started (Tutorial) 6

Restart Emacs, take the program we developed in the first part of this tutorial and
re-indent it with C-c h and M-C-\. You probably want to keep these lines in ‘. emacs’, with
values adjusted to your likings. If you want to get more information about any of these
variables, type, e.g., C-h v idlwave-main-block-indent RET). To find which variables
can be customized, look for items marked ‘User Option:’ in the manual.

If you cannot wrap your head around this Lisp stuff, there is another, more user-friendly
way to customize all the IDLWAVE variables. You can access it through the IDLWAVE
menu in one of the ‘. pro’ buffers, option Customize->Browse IDLWAVE Group. Here you’ll
be presented with all the various variables grouped into categories. You can navigate the
hierarchy (e.g. Idlwave Code Formatting->Idlwave Main Block Indent), read about the
variables, change them, and ‘Save for Future Sessions’. Few of these variables need cus-
tomization, but you can exercise considerable control over IDLWAVE’s functionality with
them.

Many people I talk to find the key bindings used for the debugging commands too long
and complicated. Do I always have to type C-c C-d C-c to get a single simple command?
Due to Emacs rules and conventions I cannot make better bindings by default, but you
can. First, there is a way to assign all debugging commands in a single sweep to other
combinations. The only problem is that we have to use something which Emacs does not
need for other important commands. A good option is to execute debugging commands by
holding down (CONTROL) and SHIFT) while pressing a single character: C-S-b for setting a
breakpoint, C-S-c for compiling the current source file, C-S-a for deleting all breakpoints.
You can have this with

(setq idlwave-shell-debug-modifiers ’(shift control))

If you have a special keyboard with for example a key, you could use
(setq idlwave-shell-debug-modifiers ’(hyper))

instead to get compilation on H-c.

You can also assign specific commands to function keys. This you must do in the mode-
hook, a special function which is run when a new buffer gets set up. Keybindings can only
be done when the buffer exists. The possibilities for key customization are endless. Here
we set function keys f5-f8 to common debugging commands.

;3 First for the source buffer
(add-hook ’idlwave-mode-hook
(lambda ()
(local-set-key [f5] ’idlwave-shell-break-here)
(local-set-key [£6] ’idlwave-shell-clear-current-bp)
(local-set-key [f7] ’idlwave-shell-cont)
(local-set-key [f8] ’idlwave-shell-clear-all-bp)))
;; Then for the shell buffer
(add-hook ’idlwave-shell-mode-hook
(lambda ()
(local-set-key [f5] ’idlwave-shell-break-here)
(local-set-key [f6] ’idlwave-shell-clear-current-bp)
(local-set-key [f7] ’idlwave-shell-cont)
(local-set-key [£8] ’idlwave-shell-clear-all-bp)))

Chapter 3: Getting Started (Tutorial) 7

3.3 Lession III: Library Catalog

We have already used the routine info display in the first part of this tutorial. This was
the key C-c ? which displays information about the IDL routine near the cursor position.
Wouldn’t it be nice to have the same available for your own library routines and for the
huge amount of code in major extension libraries like JHUPL or the IDL-Astro library?
To do this, you must give IDLWAVE a chance to study these routines first. We call this
Building the library catalog.

From the IDLWAVE entry in the menu bar, select Routine Info/Select Catalog
Directories. If necessary, start the shell first with C-c C-s (see Section 5.1 [Starting the
Shell], page 21). IDLWAVE will find out about the IDL !PATH variable and offer a list of
directories on the path. Simply select them all (or whichever you want) and click on the
‘Scan&Save’ button. Then go for a cup of coffee while IDLWAVE collects information for
each and every IDL routine on your search path. All this information is written to the file
‘.idlcat’ in your home directory and will from now one be automatically loaded whenever
you use IDLWAVE. Try to use routine info (C-c ?) or completion (M-<TAB>) while on any
routine or partial routine name you know to be located in the library. E.g., if you have
scanned the IDL-Astro library:

a=readf (M-<TAB>)
expands to ‘readfits(’. Then try
a=readfits ((Cc?)
and you get:
Usage: Result = READFITS(filename, header, heap)

I hope you made it until here. Now you are set to work with IDLWAVE. On the way you
will want to change other things, and to learn more about the possibilities not discussed
in this short tutorial. Read the manual, look at the documentation strings of interesting
variables (with C-h v idlwave<-variable-name> RET)) and ask the remaining questions
on comp.lang.idl-pvwave.

Chapter 4: The IDLWAVE Major Mode 8

4 The IDLWAVE Major Mode

The IDLWAVE major mode supports editing IDL and WAVE/CL command files. In
this chapter we describe the main features of the mode and how to customize them.

4.1 Code Formatting

4.1.1 Code Indentation

Like all Emacs programming modes, IDLWAVE performs code indentation. The
key indents the current line relative to context. insert a newline and indents the new
line. The indentation is governed by a number of variables.

To re-indent a larger portion of code (e.g. when working with foreign code written
with different conventions), use M-C-\ (indent-region) after marking the relevant code.
Useful marking commands are C-x h (the entire file) or M-C-h (the current subprogram).
See Section 4.8 [Actions], page 17, for information how to impose additional formatting
conventions on foreign code.

idlwave-main-block-indent (0) User Option
Extra indentation for the main block of code. That is the block between the FUNC-
TION/PRO statement and the END statement for that program unit.

idlwave-block-indent (5) User Option
Extra indentation applied to block lines. If you change this, you probably also want
to change idlwave-end-offset.

idlwave-end-offset (-4) User Option
Extra indentation applied to block END lines. A value equal to negative idlwave-
block-indent will make END lines line up with the block BEGIN lines.

idlwave-continuation-indent (2) User Option
Extra indentation applied to continuation lines and inside unbalanced parenthesis.

4.1.2 Comment Indentation

In IDL, lines starting with a ‘;’ are called comment lines. Comment lines are indented
as follows:

5 The indentation of lines starting with three semicolons remains unchanged.
HE Lines starting with two semicolons are indented like the surrounding code.
; Lines starting with a single semicolon are indent to a minimum column.

The indentation of comments starting in column 0 is never changed.

idlwave-no-change-comment User Option
The indentation of a comment starting with this regexp will not be changed.

Chapter 4: The IDLWAVE Major Mode 9

idlwave-begin-line-comment User Option
A comment anchored at the beginning of line.

idlwave-code-comment User Option
A comment that starts with this regexp is indented as if it is a part of IDL code.

4.1.3 Continuation Lines and Filling

In IDL, a newline character terminates a statement unless preceded by a ‘$’. If you
would like to start a continuation line, use M-RET) which calls the command idlwave-
split-line. It inserts a ‘$¢’ to indicate that the following line is a continuation of the
current line, terminates the line with a newline and indents the new line. The command
M-RET) can also be used in the middle of a line to split the line at that point. When used
inside a long string constant, the string is split with the ‘+’ concatenation operator.

When filling comment paragraphs, IDLWAVE overloads the normal filling functions and
uses a function which creates hanging paragraphs as they are customary in the IDL routine
headers. When auto-fill-mode is turned on (toggle with C-c C-a), comments will be
auto-filled. If the first line of a paragraph is matched by idlwave-hang-indent-regexp,
subsequent lines are indented to after the position of this match, as in the following example.

; INPUTS:
; X — an array containing
; lots of interesting numbers.

; ¥ — another variable where
; a hanging paragraph is used
; to describe it.

You also refill a comment paragraph with M—-q.

idlwave-fill-comment-line-only (t) User Option
Non-nil means auto fill will only operate on comment lines.

idlwave-auto-fill-split-string (t) User Option
Non-nil means auto fill will split strings with the IDL ‘+’ operator.

idlwave-split-line-string (t) User Option
Non-nil means idlwave-split-1line will split strings with ‘+’.

idlwave-hanging-indent (t) User Option
Non-nil means comment paragraphs are indented under the hanging indent given by
idlwave-hang-indent-regexp match in the first line of the paragraph.

idlwave-hang-indent-regexp User Option
Regular expression matching the position of the hanging indent in the first line of a
comment paragraph.

idlwave-use-last-hang-indent (nil) User Option
Non-nil means use last match on line for idlwave-indent-regexp.

Chapter 4: The IDLWAVE Major Mode 10

4.1.4 Syntax Highlighting

Highlighting of keywords, comments, strings etc. can be accomplished with font-lock.
If you are using global-font-lock-mode (on Emacs), or have font-lock turned on in any
other buffer in XEmacs, it should also automatically work in IDLWAVE buffers. If not, you
can enforce it with the following line in your ‘.emacs’

(add-hook ’idlwave-mode-hook ’turn-on-font-lock)

IDLWAVE supports 3 levels of syntax highlighting. The variable font-lock-maximum—
decoration determines which level is selected.

idlwave-default-font-lock-items User Option
Items which should be fontified on the default fontification level 2.

4.2 Routine Info

IDL defines more than one thousand procedures, functions and object methods. This
large command set makes it difficult to remember the calling sequence and keywords of
a command. IDLWAVE contains a list of all builtin routines with calling sequences and
keywords!. It also scans Emacs buffers and library files for routine definitions and queries
the IDLWAVE-Shell for the properties of modules currently compiled under the shell. This
information is updated automatically. If you think the information is not up-to-date, use
C-c C-i (idlwave-update-routine-info) to enforce a global update.

To display the information about a routine, press C-c ? which calls the command
idlwave-routine-info. When the current cursor position is on the name or in the ar-
gument list of a procedure or function, information will be displayed about the routine. For
example, consider the cursor positions in the following line

plot,x,alog(x+5*sin(x) + 2),
1 2 3 4 5 6 7 8

On positions 1,2 and 8, information about the ‘plot’ procedure will be shown. On
positions 3,4, and 7, the ‘alog’ function will be described, while positions 5 and 6 will select
the ‘sin’ function. When you ask for routine information about an object method, and the
method exists in several classes, IDLWAVE queries for the class of the object.

The description displayed contains the calling sequence, the list of keywords and the
source location of this routine. It looks like this:
Usage: XMANAGER, NAME, ID
Keywords: BACKGROUND CATCH CLEANUP EVENT_HANDLER GROUP_LEADER
JUST_REG MODAL NO_BLOCK
Source: SystemLib [CSB] /soft1/id153/1lib/xmanager.pro

If a definition of this routine exists in several files accessible to IDLWAVE, several
‘Source’ lines will point to the different files. This may indicate that your routine is
shadowing a library routine, which may or may not be what you want (see Section A.4
[Load-Path Shadows|, page 31). The information about the calling sequence and the key-
words is derived from the first source listed. Library routines can only be supported if

1 This list was created by scanning the IDL manual and might contain (very few) errors. Please report
any detected errors to the maintainer, so that they can be fixed.

Chapter 4: The IDLWAVE Major Mode 11

you have scanned the local IDL library (see Section A.3 [Library Catalog], page 30). The
source entry consists of a source category, a set of flags and the path to the source file. The
following categories exist:

System A system routine, but we do not know if it is Builtin or SystemLib. When
the system library has bee scanned (see Section A.3 [Library Catalog],
page 30), this category will automatically split into the next two.

Builtin A builtin routine with no source code available.

System.Lib A library routine in the official lib directory ‘!DIR/1ib’.

Obsolete A library routine in the official lib directory ‘!DIR/1lib/obsolete’.
Library A file on IDL’s search path !'PATH.

Other Any other file not known to be on the search path.

Unresolved The shell lists this routine as unresolved.

You can define additional categories based on the file name and path with the variable
idlwave-special-lib-alist.

The flags [CSB] indicate if the file is known to IDLWAVE from the library catalog
([C--1, see Section A.3 [Library Catalog], page 30), from the Shell ([-S-]) or from an
Emacs buffer ([--B]). Combinations are possible. If a file contains multiple definitions
of the same routine, the file name will be prefixed with ‘(Nx)’ where ‘N’ is the number of
definitions.

Some of the text in the ‘*Help*’ buffer will be active (it highlights when you move the
mouse over it). Clicking on these items will have the following effects:

Usage If online help is installed, a click with the right mouse button on the Us-
age: line will access the help for the routine (see Section 4.3 [Online Help],
page 12).

Keyword Online help about keywords is also available with the right mouse button.

Clicking on a keyword with the middle mouse button will insert this key-
word in the buffer from where idlwave-routine-info was called. Holding

down while clicking also adds the initial ‘/’.
Source Clicking with the middle mouse button on a ‘Source’ line finds the source

file of the routine and visits it in another window. Another click on the
same line switches back to the buffer from which C-c¢ ? was called. If you
use the right mouse button, the source will not be visited by a buffer, but

displayed in the online help window.
Classes The Classes line is only included in the routine info window if the current

class inherits from other classes. You can click with the middle mouse
button to display routine info about the current method in other classes on
the inheritance chain.

idlwave-resize-routine-help-window (t) User Option
Non-nil means, resize the Routine-info ‘*Help*’ window to fit the content.

idlwave-special-lib-alist User Option
Alist of regular expressions matching special library directories.

idlwave-rinfo-max-source-lines (5) User Option
Maximum number of source files displayed in the Routine Info window.

Chapter 4: The IDLWAVE Major Mode 12

4.3 Online Help

For IDL system routines, RSI provides extensive documentation. IDLWAVE can access
an ASCII version of this documentation very quickly and accurately. This is much faster
than using the IDL online help application, also because usually IDLWAVE gets you to
the right place in the docs directly, without additional browsing and scrolling. For this
online help to work, you need an ASCII version of the IDL. documentation which is not part
of the standard IDLWAVE distribution. The required files can be downloaded from the
maintainers webpage (http://idlwave.org/). As the text is extracted from PDF files, the
formatting of the help text is good for normal text, but graphics and multiline equations
will not be well represented. See also Section A.5 [Documentation Scan|, page 31.

For routines which are not documented in the IDL manual (for example your own rou-
tines), the source code is used as help text. If the requested information can be found in
a (more or less) standard DocLib file header, IDLWAVE shows the header. Otherwise the
routine definition statement (pro/function) is shown.

In any IDL program, press M-7 (idlwave-context-help) or click with S-Mouse-3 to
access context sensitive online help. The following locations are recognized as context:

Routine name The name of a routine (function, procedure, method).
Keyword Parameter Keyword parameter of a routine.

System Variable System variable like !DPI.

IDL Statement Like PRO, REPEAT, or COMPILE_OPT.

Class name Class name in OBJ_NEW call.

Ezecutive Command Executive command like .RUN. Mostly useful in the shell.
Default The routine that would be selected for routine info display.

Note that the 0BJ_NEW function is special in that the help displayed depends on the cursor
position: If the cursor is on the ‘OBJ_NEW’, this function is described. If it is on the class
name inside the quotes, the documentation for the class is pulled up. If the cursor is after
the class name, anywhere in the argument list, the documentation for the corresponding
Init method and its keywords is targeted.

Apart from source buffers, there are two more places from which online help can be accessed.

e Online help for routines and keywords can be accessed through the Routine Info display.
Click with Mouse-3 on an item to see the corresponding help (see Section 4.2 [Routine
Info], page 10).

e When using completion and Emacs pops up a window with possible completions, click-
ing with Mouse-3 on a completion item invokes help on that item (see Section 4.4
[Completion], page 14).

In both cases, a blue face indicates that the item is documented in the IDL manual.

Chapter 4: The IDLWAVE Major Mode 13

The help window is normally displayed in a separate frame. The following commands
can be used to navigate inside the help system.

(RET)
(DED)

=a o B
o . .
>)
N
N

* O

Scroll forward one page.

Scroll forward one line.

Scroll back one page.

Browse to the next or previous topic (in physical sequence).

Move back and forward through the help topic history.

Clear the history.

Follow a link. Active links are displayed in a different font. Items under

See Also are active, and classes have links to their methods and back.
Open a topic. The topic can be selected with completion.

Load the whole help file into Emacs, for global text searches.
Kill the help window.

When the help text is a source file, the following commands are also available.

el s

. (Dot)

F

idlwave-help-directory

Jump to DocLib Header of the routine whose source is displayed as help.
Jump to the first DocLib Header in the file.
Jump back and forth between the routine definition (the pro/function

statement) and the description of the help item in the DocLib header.
Fontify the buffer like source code. See the variable idlwave-help-

fontify-source-code.

The directory where idlw-help.txt and idlw-help.el are stored.

idlwave-help-use-dedicated-frame (t)

Non-nil means, use a separate frame for Online Help if possible.

idlwave-help-frame-parameters

The frame parameters for the special Online Help frame.

idlwave-max-popup-menu-items (20)

Maximum number of items per pane in pop-up menus.

idlwave-extra-help-function

Function to call for help if the normal help fails.

idlwave-help-fontify-source-code (nil)

Non-nil means, fontify source code displayed as help.

idlwave-help-source-try-header (t)

Non-nil means, try to find help in routine header when displaying source file.

idlwave-help-link-face

The face for links to IDLWAVE online help.

idlwave-help-activate-links-agressively (t)

Non-nil means, make all possible links in help window active.

User Option

User Option

User Option

User Option

User Option

User Option

User Option

User Option

User Option

Chapter 4: The IDLWAVE Major Mode 14

4.4 Completion

IDLWAVE offers completion for class names, routine names and keywords. As in many
programming modes, completion is bound to M-(TAB). Completion uses the same internal
information as routine info, so when necessary it can be updated with C-c C-i (idlwave-
update-routine-info).

The completion function is context sensitive and figures out what to complete at point.
Here are example lines and what M—(TAB) would try to complete when the cursor is on the
position marked with a ‘*’.

plox Procedure

X = ax Function

plot,xra* Keyword of plot procedure
plot,x,y,/x* Keyword of plot procedure
plot,min(* Keyword of min function

obj —-> ax Object method (procedure)

a(2,3) = obj -> ax Object method (function)

X = obj_new(’IDL* Class name

X = obj_new(’MyCl’,ax Keyword to Init method in class MyCl
pro Ax Class name

pro * Fill in Class:: of first method in this file
vk System variable

lversion.tx* Structure tag of system variable
self.gx Class structure tag in methods

If the list of completions is too long to fit in the ‘*Completions*’ window, the window
can be scrolled by pressing M-(TAB) repeatedly. Online help (if installed) for each possible
completion is available by clicking with Mouse-3 on the item. Items for which system online
help (from the IDL manual) is available will be displayed in a different font. For other items,
the corresponding source code or DocLib header is available as help text.

The case of the completed words is determined by what is already in the buffer. When
the partial word being completed is all lower case, the completion will be lower case as well.
If at least one character is upper case, the string will be completed in upper case or mixed
case. The default is to use upper case for procedures, functions and keywords, and mixed
case for object class names and methods, similar to the conventions in the IDL manuals.
These defaults can be changed with the variable idlwave-completion-case.

idlwave-completion-case User Option
Association list setting the case (UPPER /lower/Capitalized/...) of completed words.

idlwave-completion-force-default-case (nil) User Option
Non-nil means, completion will always honor the settings in idlwave-completion-
case. When nil (the default), lower case strings will be completed to lower case.

idlwave-complete-empty-string-as-lower-case (nil) User Option
Non-nil means, the empty string is considered lower case for completion.

idlwave-keyword-completion-adds-equal (t) User Option
Non-nil means, completion automatically adds ‘=" after completed keywords.

Chapter 4: The IDLWAVE Major Mode 15

idlwave-function-completion-adds-paren (t) User Option
Non-nil means, completion automatically adds ‘(" after completed function. A value
of ‘2’ means, also add the closing parenthesis and position cursor between the two.

idlwave-completion-restore-window-configuration (t) User Option
Non-nil means, restore window configuration after successful completion.

idlwave-highlight-help-links-in-completion (t) User Option

Non-nil means, highlight completions for which system help is available.

Object Method Completion and Class Ambiguity

An object method is not uniquely determined without the object’s class. Since the class
part is usually omitted in the source code, IDLWAVE considers all available methods in
all classes as possible completions of an object method name. For keywords, the com-
bined keywords of the current method in all available classes will be considered. In the
‘*Completions*’ buffer, the classes allowed for each completion will be shown next to the
item (see option idlwave-completion-show-classes). As a special case, the class of an
object called ‘self’ object is always the class of the current routine. All classes it inherits
from are considered as well where appropriate.

You can also call idlwave-complete with a prefix arg: C-u M=(TAB). IDLWAVE will then
prompt you for the class in order to narrow down the number of possible completions. The
variable idlwave-query-class can be configured to make this behavior the default (not
recommended). After you have specified the class for a particular statement (e.g. when
completing the method), IDLWAVE can remember it for the rest of the editing session.
Subsequent completions in the same statement (e.g. keywords) can then reuse this class
information. Remembering the class works by placing a text property in the object operator
‘=>’. This is not enabled by default - the variable idlwave-store-inquired-class can be
used to turn it on.

idlwave-support-inheritance (t) User Option
Non-nil means, treat inheritance with completion, online help etc.

idlwave-completion-show-classes (1) User Option
Non-nil means, show classes in ‘*Completions*’ buffer when completing object
methods and keywords.

idlwave-completion-fontify-classes (t) User Option
Non-nil means, fontify the classes in completions buffer.

idlwave-query-class (nil) User Option
Association list governing query for object classes during completion.

idlwave-store-inquired-class (nil) User Option
Non-nil means, store class of a method call as text property on ‘=>’.

idlwave-class-arrow-face User Option
Face to highlight object operator arrows ‘=>’ which carry a class text property.

Chapter 4: The IDLWAVE Major Mode 16

4.5 Routine Source

Apart from clicking on a Source: line in the routine info window, there is also another
way to find the source file of a routine. The command C-c C-v (idlwave-find-module) asks
for a module name, offering the same default as idlwave-routine-info would have used.
In the minibuffer, specify a complete routine name (including the class part). IDLWAVE
will display the source file in another window.

Since getting the source of a routine into a buffer is so easy with IDLWAVE, too many
buffers visiting different IDL source files are sometimes created. The special command C-c
C-k (idlwave-kill-autoloaded-buffers) can be used to remove these buffers.

4.6 Resolving Routines

The key sequence C-c = calls the command idlwave-resolve and sends the line
‘RESOLVE_ROUTINE, ’routine_name’’ to IDL in order to resolve (compile) it. The default
routine to be resolved is taken from context, but you get a chance to edit it.

idlwave-resolve is one way to get a library module within reach of IDLWAVE’s routine
info collecting functions. A better way is to scan (parts of) the library (see Section A.3
[Library Catalog], page 30). Routine info on library modules will then be available without
the need to compile the modules first, and even without a running shell.

See Appendix A [Sources of Routine Info|, page 29, for in-depth information where
IDLWAVE collects data about routines, and how to update this information.

4.7 Code Templates

IDLWAVE can insert IDL code templates into the buffer. For a few templates, this is
done with direct key bindings:

C-c C-c CASE statement template
C-c C-f FOR loop template

C-c C-r REPEAT loop template
C-c C-w WHILE loop template

Otherwise, special abbreviations are used. Emacs abbreviations are expanded by typing
text into the buffer and pressing or RET). The special abbreviations used to insert
code templates all start with a ‘\’ (the backslash). Here are a few examples of predefined
abbreviations. For a full list, use M-x idlwave-list-abbrevs.

\pr PROCEDURE template

\fu FUNCTION template

\c CASE statement template

\f FOR loop template

\r REPEAT loop template

\w WHILE loop template

\i IF statement template
\elif IF-ELSE statement template
\b BEGIN

The templates are expanded in upper or lower case, depending upon the variables
idlwave-abbrev-change-case and idlwave-reserved-word-upcase.

Chapter 4: The IDLWAVE Major Mode 17

idlwave-abbrev-start-char ("\") User Option
A single character string used to start abbreviations in abbrev mode.

idlwave-abbrev-move (t) User Option
Non-nil means the abbrev hook can move point, e.g. to end up between the paren-
thesis of a function call.

4.8 Actions

Actions are special commands which are executed automatically while you write code in
order to check the structure of the program or to enforce coding standards. Most actions
which have been implemented in IDLWAVE are turned off by default, assuming that the
average user wants her code the way she writes it. But if you are a lazy typist and want
your code to adhere to certain standards, they can be helpful.

Action can be applied in three ways:

e Some actions are applied directly while typing. For example, pressing ‘=’ can run a

check to make sure that this operator is surrounded by spaces and insert these spaces
if necessary. Pressing after a reserved word can call a command to change the
word to upper case.

e When a line is re-indented with (TAB), actions can be applied to the entire line. To
enable this, the variable idlwave-do-actions must be non-nil.

e Action can also be applied to a larger piece of code, e.g. in order to convert foreign
code to your own style. To do this, mark the relevant part of the code and execute
M-x expand-region-abbrevs. Useful marking commands are C-x h (the entire file)
or M-C-h (the current subprogram). See Section 4.1.1 [Code Indentation], page 8, for
information how to adjust the indentation of the code.

idlwave-do-actions (nil) User Option
Non-nil means performs actions when indenting.

4.8.1 Block Boundary Check

Whenever you type an END statement, IDLWAVE finds the corresponding start of the
block and the cursor blinks back to that location for a second. If you have typed a specific
END, like ENDIF or ENDCASE, you get a warning if that kind of END does not match the type
of block it terminates.

Set the variable idlwave-expand-generic-end in order to have all generic END state-
ments automatically expanded to a specific type. You can also type C-c] to close the
current block by inserting the appropriate END statement.

idlwave-show-block (t) User Option
Non-nil means point blinks to block beginning for idlwave-show-begin.

idlwave-expand-generic-end (t) User Option
Non-nil means expand generic END to ENDIF/ENDELSE/ENDWHILE etc.

Chapter 4: The IDLWAVE Major Mode 18

idlwave-reindent-end (t) User Option
Non-nil means re-indent line after END was typed.

4.8.2 Padding Operators

Some operators can be automatically surrounded by spaces. This can happen when the
operator is typed, or also later when the line is indented. IDLWAVE contains this setting for
the operators ‘&’, ‘<’, >, ¢,”. ‘=", and ‘->’!, but the feature is turned off by default. If you
want to turn it on, customize the variables idlwave-surround-by-blank and idlwave-
do-actions. You can also define similar actions for other operators by using the function
idlwave-action-and-binding in the mode hook. For example, to enforce space padding
of the ‘+’ and ‘*’ operators, try this in ‘.emacs’

(add-hook ’idlwave-mode-hook
(lambda ()
(setq idlwave-surround-by-blank t) ; Turn this type of actions on
(idlwave-action-and-binding "*" °’(idlwave-surround 1 1))
(idlwave-action-and-binding "+" ’(idlwave-surround 1 1))))

idlwave-surround-by-blank (nil) User Option
Non-nil means, enable idlwave-surround. If non-nil, ‘=", ‘<’ >’/ ‘&’ ¢, ‘=> are

surrounded with spaces by idlwave-surround.

idlwave-pad-keyword (t) User Option
Non-nil means pad ‘=’ for keywords like assignments.

4.8.3 Case Changes

Actions can be used to change the case of reserved words or expanded abbreviations by
customizing the variables idlwave-abbrev-change-case and idlwave-reserved-word-
upcase. If you want to change the case of additional words automatically, put something
like the following into your ‘.emacs’ file:

(add-hook ’idlwave-mode-hook
(lambda ()

;; Capitalize system vars

(idlwave-action-and-binding idlwave-sysvar ’(capitalize-word 1) t)

;; Capitalize procedure name

(idlwave-action-and-binding "\\<\\(pro\\|function\\)\\>[\t]*\\<"
> (capitalize-word 1) t)

;3 Capitalize common block name

(idlwave-action-and-binding "\\<common\\>[\t]+\\<"
’(capitalize-word 1) t)))

For more information, see the documentation string for the function idlwave-action-
and-binding.

idlwave-abbrev-change-case (nil) User Option
Non-nil means all abbrevs will be forced to either upper or lower case. Legal values
are nil, t, and down.

L Operators longer than one character can only be padded during line indentation.

Chapter 4: The IDLWAVE Major Mode 19

idlwave-reserved-word-upcase (nil) User Option
Non-nil means, reserved words will be made upper case via abbrev expansion.

4.9 Documentation Header

The command C-c C-h inserts a standard routine header into the buffer, with the usual
fields for documentation. One of the keywords is ‘MODIFICATION HISTORY’ under which the
changes to a routine can be recorded. The command C-c C-m jumps to the ‘MODIFICATION
HISTORY’ of the current routine or file and inserts the user name with a timestamp.

idlwave-file-header User Option
The doc-header template or a path to a file containing it.

idlwave-timestamp-hook User Option
The hook function used to update the timestamp of a function.

idlwave-doc-modifications-keyword User Option
The modifications keyword to use with the log documentation commands.

idlwave-doclib-start User Option
Regexp matching the start of a document library header.

idlwave-doclib-end User Option
Regexp matching the start of a document library header.

4.10 Motion Commands

IDLWAVE supports both ‘Imenu’ and ‘Func-menu’, two packages which make it easy to
jump to the definitions of functions and procedures in the current file.

Several commands allow to move quickly through the structure of an IDL program.
These are

C-M-a Beginning of subprogram

C-M-e End of subprogram

C-c{ Beginning of block (stay inside the block)
C-c} End of block (stay inside the block)
M-C-n Forward block (on same level)

M-C-p Backward block (on same level)

M-C-d Down block (enters a block)

M-C-u Backward up block (leaves a block)

C-c C-n Next Statement

Chapter 4: The IDLWAVE Major Mode 20

4.11 Miscellaneous Options

idlwave-help-application User Option
The external application providing reference help for programming.

idlwave-startup-message (t) User Option
Non-nil means display a startup message when idlwave-mode’ is first called.

idlwave-mode-hook User Option
Normal hook. Executed when a buffer is put into idlwave-mode.

idlwave-load-hook User Option
Normal hook. Executed when ‘idlwave.el’ is loaded.

Chapter 5: The IDLWAVE Shell 21

5 The IDLWAVE Shell

The IDLWAVE shell is an Emacs major mode which allows to run the IDL program as
an inferior process of Emacs. It can be used to work with IDL interactively, to compile and
run IDL programs in Emacs buffers and to debug these programs. The IDLWAVE shell
uses ‘comint’, an Emacs packages which handles the communication with the IDL program.
Unfortunately IDL for Windows and MacOS does not allow the interaction with Emacs?,
so the IDLWAVE shell only works under GNU and Unix.

5.1 Starting the Shell

The IDLWAVE shell can be started with the command M-x idlwave-shell. In idlwave-
mode the function is bound to C-c C-s. It creates a buffer ‘*id1*’ which is used to interact
with the shell. If the shell is already running, C-c C-s will simple switch to the shell
buffer. The command C-c C-1 (idlwave-shell-recenter-shell-window) displays the
shell window without selecting it.

In order to create a separate frame for the IDLWAVE shell buffer, call idlwave-shell
with a prefix argument: C-u C-c C-s or C-u C-c¢ C-1. If you always want a dedicated frame
for the shell window, configure the variable idlwave-shell-use-dedicated-frame.

The shell can also be started automatically when another command tries to send a
command to it. To enable auto start, set the variable idlwave-shell-automatic-start
to t.

idlwave-shell-explicit-file-name User Option
This is the command to run IDL.

idlwave-shell-command-line-options User Option
A list of command line options for calling the IDL program.

idlwave-shell-prompt-pattern User Option
Regexp to match IDL prompt at beginning of a line.

idlwave-shell-process-name User Option
Name to be associated with the IDL process.

idlwave-shell-automatic-start User Option
Non-nil means attempt to invoke idlwave-shell if not already running.

idlwave-shell-initial-commands User Option
Initial commands, separated by newlines, to send to IDL.

idlwave-shell-use-dedicated-frame (nil) User Option
Non-nil means, IDLWAVE should use a special frame to display shell buffer.

! Please inform the maintainer if you come up with a way to make the IDLWAVE shell work on these
systems.

Chapter 5: The IDLWAVE Shell 22

idlwave-shell-frame-parameters User Option
The frame parameters for a dedicated idlwave-shell frame.

idlwave-shell-temp-pro-prefix User Option
The prefix for temporary IDL files used when compiling regions.

idlwave-shell-mode-hook User Option
Hook for customizing idlwave-shell-mode.

5.2 Using the Shell

The IDLWAVE shell works in the same fashion as other shell modes in Emacs. It provides
command history, command line editing and job control. The and arrows cycle
through the input history just like in an X terminal®>. Here is a list of commonly used
commands.

Cycle backwards in input history

DOWN Cycle forwards in input history

M-p Cycle backwards in input history matching input
M-n Cycle forwards in input history matching input
M-r Previous input matching a regexp

M-s Next input that matches a regexp

return Send input or copy line to current prompt

C-c C-a Beginning of line; skip prompt
C-c C-u Kill input to beginning of line
C-c C-w Kill word before cursor
C-c C-c Send ~C
C-c C-z Send "7
C-c C-\ Send "\
C-c C-o Delete last batch of process output
C-c C-r Show last batch of process output
C-c C-1 List input history
In addition to these standard ‘comint’ commands, idlwave-shell-mode provides many
of the commands which simplify writing IDL code, including abbreviations, online help, and
completion. See Section 4.2 [Routine Info|, page 10 and Section 4.3 [Online Help], page 12
and Section 4.4 [Completion], page 14 for more information on these commands.

TAB Completion of file names, routine names and keywords (idlwave-shell-
complete)

M-(TAB) Same as

C-c? Routine Info display (idlwave-routine-info)

M-7 IDL online help on routine (idlwave-routine-info-from-idlhelp)

C-c C-1 Update routine info from buffers and shell (idlwave-update-routine-info)

C-c C-v Find the source file of a routine (idlwave-find-module)

C-c = Compile a library routine (idlwave-resolve)

2 This is different from normal Emacs /Comint behavior, but more like an xterm. If you prefer the default
comint functionality, check the variable idlwave-shell-arrows-do-history.

Chapter 5: The IDLWAVE Shell 23

idlwave-shell-arrows-do-history (t) User Option
Non-nil means and arrows move through command history like xterm.

idlwave-shell-file-name-chars User Option
The characters allowed in file names, as a string. Used for file name completion.

idlwave-shell-graphics-window-size User Option
Size of IDL graphics windows popped up by special IDLWAVE command.

IDLWAVE works in line input mode: You compose a full command line, using all the
power Emacs gives you to do this. When you press RET), the whole line is sent to IDL.
Sometimes it is necessary to send single characters (without a newline), for example when
an IDL program is waiting for single character input with the GET_KBRD function. You can
send a single character to IDL with the command C-c C-x (idlwave-shell-send-char).
When you press C-c C-y (idlwave-shell-char-mode-loop), IDLWAVE runs a blocking
loop which accepts characters and immediately sends them to IDL. The loop can be exited
with C-g. It terminates also automatically when the current IDL command is finished.
Check the documentation of the two variables described below for a way to make IDL
programs trigger automatic switches of the input mode.

idlwave-shell-use-input-mode-magic (nil) User Option
Non-nil means, IDLWAVE should check for input mode spells in output.

idlwave-shell-input-mode-spells User Option
The three regular expressions which match the magic spells for input modes.

5.3 Debugging IDL Programs

Programs can be compiled, run, and debugged directly from the source buffer in Emacs.
The IDLWAVE shell installs key bindings both in the shell buffer and in all IDL code
buffers of the current Emacs session. On Emacs versions which support this, it also installs
a debugging toolbar. The display of the toolbar can be toggled with C-c C-d C-t (idlwave-
shell-toggle-toolbar).

The debugging key bindings are by default on the prefix key C-c C-d, so for example
setting a breakpoint is done with C-c C-d C-b, compiling a source file with C-c C-d C-c.
If you find this too much work you can choose a combination of modifier keys which is not
used by other commands. For example, if you write in ‘. emacs’

(setq idlwave-shell-debug-modifiers ’(control shift))

a breakpoint can be set by pressing b while holding down shift and control keys, i.e.
C-S-b. Compiling a source file will be on C-S-c, deleting a breakpoint C-S-d etc. In the
remainder of this chapter we will assume that the C-c C-d bindings are active, but each of
these bindings will have an equivalent single-keypress shortcut with the modifiers given in
the idlwave-shell-debug-modifiers variable.

idlwave-shell-prefix-key (C-c C-d) User Option
The prefix key for the debugging map idlwave-shell-mode-prefix-map.

Chapter 5: The IDLWAVE Shell 24

idlwave-shell-activate-prefix-keybindings (t) User Option
Non-nil means, debug commands will be bound to the prefix key, like C-c C-d C-b.

idlwave-shell-debug-modifiers (nil) User Option
List of modifier keys to use for binding debugging commands in the shell and in source
buffers.

idlwave-shell-use-toolbar (t) User Option

Non-nil means, use the debugging toolbar in all IDL related buffers.

5.3.1 Compiling Programs

In order to compile the current buffer under the IDLWAVE shell, press C-c C-d C-c
(idlwave-save-and-run). This first saves the current buffer and then send the command
‘.run path/to/file’ to the shell. You can also execute C-c C-d C-c from the shell buffer,
in which case the most recently compiled buffer will be saved and re-compiled.

When developing or debugging a program, it is often necessary to execute the same
command line many times. A convenient way to do this is C-¢ C-d C-y (idlwave-shell-
execute-default-command-line). This command first resets IDL from a state of inter-
rupted execution by closing all files and returning to the main interpreter level. Then a
default command line is send to the shell. To edit the default command line, call idlwave-
shell-execute-default-command-line with a prefix argument: C-u C-c C-d C-y.

idlwave-shell-mark-stop-line (t) User Option
Non-nil means, mark the source code line where IDL is currently stopped. The value
decides about the preferred method. Legal values are nil, t, arrow, and face.

idlwave-shell-overlay-arrow (">") User Option
The overlay arrow to display at source lines where execution halts.

idlwave-shell-stop-line-face User Option
The face which highlights the source line where IDL is stopped.

5.3.2 Breakpoints and Stepping

You can set breakpoints and step through a program with IDLWAVE. Setting a break-
point in the current line of the source buffer is done with C-c C-d C-b (idlwave-shell-
break-here). With a prefix arg of 1, the breakpoint gets a /ONCE keyword, meaning that
it will be deleted after first use. With a numeric prefix greater than one, the breakpoint
will only be active the nth time it is hit. To clear the breakpoint in the current line,
use C-c C-d C-d (idlwave-clear-current-bp). To clear all breakpoints, use C-c C-d C-a
(idlwave-clear-all-bp). Breakpoint lines are highlighted in the source code.

Once the program has stopped somewhere, you can step through it. Here is a summary
of the breakpoint and stepping commands:
C-c C-d C-b Set breakpoint (idlwave-shell-break-here)
C-c C-d C-1 Set breakpoint in function named here (idlwave-shell-break-in)

Chapter 5: The IDLWAVE Shell 25

C-c C-d C-d Clear current breakpoint (idlwave-shell-clear-current-bp)
C-c C-d C-a Clear all breakpoints (idlwave-shell-clear-all-bp)

C-c C-d C-s Step, into function calls (idlwave-shell-step)

C-c C-d C-n Step, over function calls (idlwave-shell-stepover)

C-c C-d C-k Skip one statement (idlwave-shell-skip)

C-c C-d C-u Continue to end of block (idlwave-shell-up)

C-c C-d C-m Continue to end of function (idlwave-shell-return)

C-c C-d C-o Continue past end of function (idlwave-shell-out)

C-c C-d C-h Continue to line at cursor position (idlwave-shell-to-here)
C-c C-d C-r Continue execution to next breakpoint (idlwave-shell-cont)
C-c C-d C-up Show higher level in calling stack (idlwave-shell-stack-up)
C-c C-d C-down Show lower level in calling stack (idlwave-shell-stack-down)
idlwave-shell-mark-breakpoints (t) User Option

Non-nil means, mark breakpoints in the source file buffers. The value indicates the
preferred method. Legal values are nil, t, face, and glyph.

idlwave-shell-breakpoint-face User Option
The face for breakpoint lines in the source code if idlwave-shell-mark-breakpoints
has the value face.

5.3.3 Examining Variables

When execution is stopped you can examine the values of variables. The command C-c
C-d C-p prints the expression at point, while C-c C-d ? shows help on this expression. The
expression at point is an array expression or a function call, or the contents of a pair of
parenthesis. The selected expression becomes highlighted in the source code for a short
time. Calling the above commands with a prefix argument will prompt for an expression
instead of using the one at point.

It is very convenient to click with the mouse on expressions to retrieve their value.
Expression printing is also bound to S-Mouse-2 and expression help to C-S-Mouse-2. l.e.
you need to hold down (SHIFT) and (CONTROL) while clicking with the mouse.

Printing of expressions also works on higher levels of the calling stack. This means that
you can examine the values of variables and expressions inside the routine which called the
current routine etc. Use the commands C-c C-d C-(UP) (idlwave-shell-stack-up) and
C-c C-d C-(DOWN) (idlwave-shell-stack-down) or the corresponding toolbar buttons to
move through the calling stack. The mode line of the shell window will indicate the routine
and the calling stack level which define the context for printing expressions. The following
restrictions apply for all levels except the current:

e Array expressions must use the ‘[]’ index delimiters. Identifiers with a ‘()’ will be
interpreted as function calls.

e Printing values of expressions on higher levels of the calling stack uses the unsupported
IDL routine ROUTINE_NAMES, which may or may not be available in future versions of
IDL.

Chapter 5: The IDLWAVE Shell 26

idlwave-shell-expression-face User Option
The face for idlwave-shell-expression-overlay. Allows you to choose the font,
color and other properties for the expression printed by IDL.

idlwave-shell-print-expression-function (nil) User Option
A function to handle special display of evaluated expressions.

Chapter 6: Installation 27

6 Installation

6.1 Installing IDLWAVE

IDLWAVE is part of Emacs 21.1 and later. It is also an XEmacs package and can
be installed from the XEmacs ftp site (ftp://ftp.xemacs.org/pub/xemacs/packages/)
with the normal package management system on XEmacs 21. These pre-installed versions
should work out-of-the-box. However, the files needed for online help are not distributed
with XEmacs/Emacs and have to be installed separately' (see Section 6.2 [Installing Online
Help], page 27).

You can also download IDLWAVE and install it yourself from the maintainers webpage
(http://idlwave.org/). Follow the instructions in the INSTALL file.

6.2 Installing Online Help

If you want to use the online help display, two additional files (an ASCII version of
the IDL documentation and a topics/code file) must be installed. These files can also be
downloaded from the maintainers webpage (http://idlwave.org/). You need to place the
files somewhere on your system and tell IDLWAVE where they are with

(setq idlwave-help-directory "/path/to/help/files/")

6.3 Upgrading from the old ‘idl.el’ file

If you have been using the old ‘id1.el’ and ‘idl-shell.el’ files and would like to use
IDLWAVE, you need to update your customization in ‘.emacs’.
1. Change all variable and function prefixes from ‘id1-’ to ‘idlwave-".
2. Remove the now invalid autoload and auto-mode-alist forms pointing to the ‘idl.el’
and ‘idl-shell.el’ files. Install the new autoload forms.

3. If you have been using the hook function recommended in earlier versions to get a
separate frame for the IDL shell, remove that command from your idlwave-shell-
mode-hook. Instead, set the variable idlwave-shell-use-dedicated-frame with

(setq idlwave-shell-use-dedicated-frame t)

4. The key sequence M-(TAB) no longer inserts a TAB character. Like in many other Emacs
modes, M-(TAB) now does completion. Inserting a TAB has therefore been moved to
C—-(TAB). On a character based terminal you can also use C-c (SPC).

! Due to copyright reasons, the ASCII version of the IDL manual cannot be distributed under the GPL.

Chapter 7: Acknowledgement 28

7 Acknowledgement

The main contributors to the IDLWAVE package have been:

— Chris Chase (mailto:chase®@att.com), the original author. Chris wrote ‘idl.el’ and
‘idl-shell.el’ and maintained them for several years.

— Carsten Dominik (mailto:dominik@astro.uva.nl), who have been in charge of the
package since version 3.0, and also wrote this manual.

— John-David Smith (mailto: jdsmith@astro.cornell.edu), current maintainer, who
is also responsible for this manual’s maintenance. John-David has also shaped Object
method completion and most new features in version 4.0 with his ideas, bug reports,
and patient explanations of IDL internals.

The following people have also contributed to the development of IDLWAVE with patches,
ideas, bug reports and suggestions.

— Ulrik Dickow <dickow@nbi.dk>

— Eric E. Dors <edors@lanl.gov>

— Stein Vidar H. Haugan <s.v.h.haugan®@astro.uio.no>

— David Huenemoerder <dph@space.mit.edu>

— Kevin Ivory <Kevin.Ivory@linmpi.mpg.de>

— Xuyong Liu <liu@stsci.edu>

— Simon Marshall <Simon.Marshall@esrin.esa.it>

— Craig Markwardt <craigm@cow.physics.wisc.edu>

— Laurent Mugnier <mugnier@onera.fr>

— Lubos Pochman <lubos@rsinc.com>

— Patrick M. Ryan <pat@jaameri.gsfc.nasa.gov>

— Marty Ryba <rybaell.mit.edu>

— Phil Williams <williams@irc.chmcc.org>

— Phil Sterne <sterne@dublin.llnl.gov>

Thanks to everyone!

Appendix A: Sources of Routine Info 29

Appendix A Sources of Routine Info

In Section 4.2 [Routine Info], page 10 and Section 4.4 [Completion|, page 14 it was
shown how IDLWAVE displays the calling sequence and keywords of routines, and how it
completes routine names and keywords. For these features to work, IDLWAVE must know
about the accessible routines.

A.1 Routine Definitions

Routines which can be used in an IDL program can be defined in several places:

1. Builtin routines are defined inside IDL itself. The source code of such routines is not
accessible to the user.

2. Routines part of the current program are defined in a file which is explicitly compiled
by the user. This file may or may not be located on the IDL search path.

3. Library routines are defined in special files which are located somewhere on IDL’s search
path. When a library routine is called for the first time, IDL will find the source file
and compile it dynamically.

4. External routines written in other languages (like Fortran or C) can be called with
CALL_EXTERNAL, linked into IDL via LINKIMAGE, or included as dynamically loaded
modules (DLMs). Currently IDLWAVE cannot provide routine info and completion
for external routines.

A.2 Routine Information Sources

In oder to know about as many routines as possible, IDLWAVE will do the following to
collect information:

1. It has a builtin list with the properties of the builtin IDL routines. IDLWAVE 4.7
is distributed with a list of 1287 routines and 5724 keywords, reflecting IDL version
5.4. This list has been created by scanning the IDL manuals and is stored in the file
‘idlw-rinfo.el’. See Section A.5 [Documentation Scan], page 31, for information how
to regenerate this file for new versions of IDL.

2. It scans all buffers of the current Emacs session for routine definitions. This is done
automatically when routine information or completion is first requested by the user.
Each new buffer and each buffer which is saved after making changes is also scanned.
The command C-c C-i (idlwave-update-routine-info) can be used at any time to
rescan all buffers.

3. If you have an IDLWAVE-Shell running as inferior process of the current Emacs session,
IDLWAVE will query the shell for compiled routines and their arguments. This happens
automatically when routine information or completion is first requested by the user,
and each time an Emacs buffer is compiled with C-¢ C-d C-c. The command C-c C-i
(idlwave-update-routine-info) can be used to ask the shell again at any time.

4. IDLWAVE can scan all or selected library files and store the result in a file which will
be automatically loaded just like ‘idlw-rinfo.el’. See Section A.3 [Library Catalog],
page 30, for information how to scan library files.

Appendix A: Sources of Routine Info 30

idlwave-scan-all-buffers-for-routine-info (t) User Option
Non-nil means, scan all buffers for IDL programs when updating info.

idlwave-query-shell-for-routine-info (t) User Option
Non-nil means query the shell for info about compiled routines.

idlwave-auto-routine-info-updates User Option
Controls under what circumstances routine info is updated automatically.

A.3 Library Catalog

IDLWAVE can extract routine information from library modules and store that infor-
mation in a file. To do this, the variable idlwave-libinfo-file needs to contain the path
to a file in an existing directory (the default is "~/.idlcat.el"). Since the file will contain
lisp code, its name should end in ‘.el’. Under Windows and MacOS, you also need to
specify the search path for IDL library files in the variable idlwave-library-path, and
the location of the IDL directory (the value of the !'DIR system variable) in the variable
idlwave-system-directory. Under Unix and GNU, these values will be automatically
inferred from an IDLWAVE shell.

The command M-x idlwave-create-libinfo-file can then be used to scan library
files. It brings up a widget in which you can select some or all directories on the search
path. If you only want to have routine and completion info of some libraries, it is sufficient
to scan those directories. However, if you want IDLWAVE to detect possible name conflicts
with routines defined in other libraries, the whole pass should be scanned.

After selecting directories, click on the ‘[Scan & Save]’ button in the widget to scan
all files in the selected directories and write the resulting routine information into the file
idlwave-libinfo-file. In order to update the library information from the same direc-
tories, call the command idlwave-update-routine-info with a double prefix argument:
C-u C-u C-c C-i. This will rescan files in the previously selected directories, write an up-
dated version of the libinfo file and rebuild IDLWAVESs internal lists.

A note of caution: Depending on your local installation, the IDL library can be very
large. Parsing it for routine information will take time and loading this information into
Emacs can require a significant amount of memory. However, having this information
available will be a great help.

idlwave-libinfo-file User Option
File for routine information of the IDL library.

idlwave-library-path User Option
IDL library path for Windows and MacOS. Not needed under GNU and Unix.

idlwave-system-directory User Option
The IDL system directory for Windows and MacOS. Not needed under GNU and
Unix.

idlwave-special-lib-alist User Option

Alist of regular expressions matching special library directories.

Appendix A: Sources of Routine Info 31

A.4 Load-Path Shadows

IDLWAVE can compile a list of routines which are defined in several different files. Since
one definition will hide (shadow) the others depending on which file is compiled first, such
multiple definitions are called "load-path shadows". IDLWAVE has several routines to scan
for load path shadows. The output is placed into the special buffer ‘*Shadows*’. The format
of the output is identical to the source section of the routine info buffer (see Section 4.2
[Routine Info], page 10). The different definitions of a routine are listed in the sequence of
likelyhood of use. So the first entry will be most likely the one you’ll get if an unsuspecting
command uses that routine. Before listing shadows, you should make sure that routine info
is up-to-date by pressing C-c C-i. Here are the different routines:

M-x idlwave-list-buffer-load-path-shadows
This commands checks the names of all routines defined in the current buffer for
shadowing conflicts with other routines accessible to IDLWAVE. The command
also has a key binding: C-c C-b

M-x idlwave-list-shell-load-path-shadows.
Checks all routines compiled under the shell for shadowing. This is very useful
when you have written a complete application. Just compile the application,
use RESOLVE_ALL to compile any routines used by your code, update the routine
info inside IDLWAVE with C-c C-i and then check for shadowing.

M-x idlwave-list-all-load-path-shadows
This command checks all routines accessible to IDLWAVE for conflicts.

For these commands to work properly you should have scanned the entire load path, not
just selected directories. Also, IDLWAVE should be able to distinguish between the system
library files (normally installed in ‘/usr/local/rsi/id1/1ib’) and any site specific or user
specific files. Therefore, such local files should not be installed inside the ‘1ib’ directory of
the IDL directory. This is of course also advisable for many other reasons.

Users of Windows and MacOS also must set the variable idlwave-system-directory
to the value of the !DIR system variable in IDL. IDLWAVE appends ‘1ib’ to the value of
this variable and assumes that all files found on that path are system routines.

Another way to find out if a specific routine has multiple definitions on the load path is
routine info display (see Section 4.2 [Routine Info], page 10).

A.5 Documentation Scan

IDLWAVE derives it knowledge about system routines from the IDL manuals. The file
‘idlw-rinfo.el’ contains the routine information for the IDL system routines. The Online
Help feature of IDLWAVE requires ASCII versions of some IDL manuals to be available in
a specific format (‘idlw-help.txt’), along with an Emacs-Lisp file ‘idlw-help.el’ with
supporting code and pointers to the ASCII file.

All 3 files can be derived from the IDL documentation. If you are lucky, the maintainer
of IDLWAVE will always have access to the newest version of IDL and provide updates.
The IDLWAVE distribution also contains the Perl program ‘get_rinfo’ which constructs
these files by scanning selected files from the IDL documentation. Instructions on how to
use ‘get_rinfo’ are in the program itself.

Appendix B: Configuration Examples 32

Appendix B Configuration Examples

Question: So now you have all these complicated configuration options in your package, but
which ones do you as the maintainer actually set in your own configuration?

Answer: Hardly any. As the maintainer, I set the default of most options to what I think
is best. However, the default settings do not turn on features which

— are not self-evident (i.e. too magic) when used by an unsuspecting user
— are too intrusive
— will not work properly on all Emacs installations out there

— break with widely used standards.

To see what I mean, here is the entire configuration I have in my ‘. emacs”:

(setq idlwave-shell-debug-modifiers ’(control shift)
idlwave-store-inquired-class t
idlwave-shell-automatic-start t
idlwave-main-block-indent 2
idlwave-help-dir "“/lib/emacs/idlwave"

idlwave-special-lib-alist ’(("/idl-astro/" . "AstroLib")
("/jhuapl/" . "JHUAPL-Lib")
("/dominik/1ib/idl/" . "MyLib")))

However, if you are an Emacs power-user and want IDLWAVE to work completely dif-
ferently, the options allow you to change almost every aspect of it. Here is an example
of a much more extensive configuration of IDLWAVE. To say it again - this is not what I
recommend, but the user is King!

;35 Settings for IDLWAVE mode

(setq idlwave-block-indent 3) ; Indentation settings
(setq idlwave-main-block-indent 3)

(setq idlwave-end-offset -3)

(setq idlwave-continuation-indent 1)

(setq idlwave-begin-line-comment "~;[";]") ; Leave ";" but not ";;"

; anchored at start of line.
(setq idlwave-surround-by-blank t) ; Turn on padding ops =,<,>
(setq idlwave-pad-keyword nil) ; Remove spaces for keyword ’=’
(setq idlwave-expand-generic-end t) ; convert END to ENDIF etc...
(setq idlwave-reserved-word-upcase t) ; Make reserved words upper case

; (with abbrevs only)

(setq idlwave-abbrev-change-case nil) ; Don’t force case of expansions
(setq idlwave-hang-indent-regexp ": ") ; Change from "- " for auto-fill
(setq idlwave-show-block nil) ; Turn off blinking to begin
(setq idlwave-abbrev-move t) ; Allow abbrevs to move point

;; Some setting can only be done from a mode hook. Here is an example:

(add-hook ’idlwave-mode-hook
(lambda (O
(setq abbrev-mode 1) ; Turn on abbrevs (-1 for off)

Appendix B: Configuration Examples 33

(setq case-fold-search nil) ; Make searches case sensitive
;; Run other functions here

(font-lock-mode 1) ; Turn on font-lock mode
(idlwave-auto-fill-mode 0) ; Turn off auto filling

;; Pad with 1 space (if -n is used then make the

;; padding a minimum of n spaces.) The defaults use -1

;; instead of 1.

(idlwave-action-and-binding "=" ’(idlwave-expand-equal 1 1))
(idlwave-action-and-binding "<" ’(idlwave-surround 1 1))
(idlwave-action-and-binding ">" ’(idlwave-surround 1 1 ’(7-)))
(idlwave-action-and-binding "&" °’(idlwave-surround 1 1))

;; Only pad after comma and with exactly 1 space
(idlwave-action-and-binding "," ’(idlwave-surround nil 1))
(idlwave-action-and-binding "&" ’(idlwave-surround 1 1))

;5 Pad only after ‘->’, remove any space before the arrow
(idlwave-action-and-binding "->" ’(idlwave-surround O -1 nil 2))
;; Set some personal bindings

;3 (In this case, makes ¢,’ have the normal self-insert behavior.)
(local-set-key "," ’self-insert-command)

;; Create a newline, indenting the original and new line.

;5 A similar function that does _not_ reindent the original

;3 line is on "\C-j" (The default for emacs programming modes) .
(local-set-key "\n" ’idlwave-newline)

;3 (local-set-key "\C-j" ’idlwave-newline) ; My preference.

)
;55 Settings for IDLWAVE SHELL mode

(setq idlwave-shell-overlay-arrow "=>") ; default is ">"

(setq idlwave-shell-use-dedicated-frame t) ; Make a dedicated frame
(setq idlwave-shell-prompt-pattern "“WAVE> ") ; default is "“IDL> "
(setq idlwave-shell-explicit-file-name "wave")

(setq idlwave-shell-process-name "wave")

(setq idlwave-shell-use-toolbar nil) ; No toolbar

Index

Index

!

IDIR, IDL variable.................... 10, 30, 31
'PATH, IDL variable 10, 29
L BIMACS . . 32

Abbreviations 16
Acknowledgement................... 28
AcCtions . ..o 17
Actions, applied to foreign code............... 17
Active text, in routine info 11
Application, testing for shadowing 31
Authors, of IDLWAVE 28
auto-fill-mode 9

B

Block boundary check........................ 17
Block, closing 17
Breakpointsl 24
Buffer, testing for shadowing 31
Buffers, killing. 16
Buffers, scanning for routine info 10, 29
Builtin list of routines........................ 29

C

CoC T 10
CecCdrn 23
CcCdCb.uo 24
CcCdCC.nei 24
CcCdCp.e 25
CcC-hv 19
CoC G 10, 14
Coec Gl eee 19
CoC CmS e 21
Coc GVt 16
CALL_EXTERNAL, IDL routine.................. 29
Calling sequencesooevuneeennea... 10
Calling stack, motion 25
Casechanges.............cooiiiiinnnaii.. 18
Case of completed words 14
Categories, of routines 10
ccemode.el. . 1
Changelog, in doc header. 19
Character input mode (Shell)................. 23
Class ambiguity 15

Class name completion....................... 14

34
Class query, forcing 15
Closing a block 17
Code formatting ... 8
Code indentation 8
Code structure, moving through 19
Code templates............cooviiin ... 16
Coding standards, enforcing 17
Comint ..o 22
Comint, Emacs package 21
Comment indentation 8
Compiling library modules 16
Compiling programs 24
Completion o i 14
Completion, in the shell 22
Completion, Online Help 14
Completion, scrolling......................... 14
Configuration examples 32
Context, for online help 12
Continuation lines 9
Contributors, to IDLWAVE................... 28
Copyright, of IDL manual 27
Copyright, of IDLWAVE 2
CORBA (Common Object Request Broker
Architecture) 1
D
Debugging oo 23
Dedicated frame, for shell buffer 21
Default command line, executing.............. 24
Default routine, for info and help 10
Default settings, of options 32
DocLib header............ 19
DocLib header, as online help................. 12
Documentation header 19
Downcase, enforcing for reserved words........ 18
Duplicate routines........................ 11, 31
E
Emacs, distributed with IDLWAVE 27
Email address, of Maintainer 28
END type checking............................ 17
END, automatic insertion...................... 17
END, expandingc..ooeeeinneennnon.. 17
Example configuration 32
Executing a default command line 24
Execution, controlled......................... 24
Expressions, help 25
Expressions, printing......................... 25
External routines 29

Index

F

Feature overview.......... 1
Filling 9
Flags, in routine info......................... 11
Font lock.......... 10
Forcing class query. o 15
Foreign code, adapting..................... 8, 17
Formatting, of code 8
Frame, for shell buffer........................ 21
FTIPsite........coo i 27
‘Func-menu’, XEmacs package................. 19
Function definitions, jumping to 19
Function name completion.................... 14

G

‘get_rinfo’ ... 31
Getting Started 3

H

Hanging paragraphs 8,9
Header, for file documentation................ 19
Help application, key bindings 13
HELP, ON €XPressionsooueeuvennenn .. 25
Highlighting of syntax........................ 10
Homepage for IDLWAVE 27
Hooks ... 20, 22

I

IDL library routine info 30
IDL manual, ASCII version................... 12
IDL variable 'DIR..................... 10, 30, 31
IDL variable 'PATH....................... 10, 29
IDL, as Emacs subprocess.................... 21
‘idl-shell.el’ ...t 1
Adl.el’ . 1
‘idlw-help.el’.................... 12, 31
‘idlw-help.txt’....... 12, 31
‘idlw-rinfo.el’ttt 31
IDLWAVE in a Nutshell 2
IDLWAVE major mode........................ 8
IDLWAVE shell, 21
IDLWAVE, homepagecooveon.. 27
idlwave-abbrev-change-case 18
idlwave-abbrev-move........................ 17
idlwave-abbrev-start-char 17
idlwave-auto-fill-split-string............. 9
idlwave-auto-routine-info-updates......... 30
idlwave-begin-line-comment 9
idlwave-block-indent........................ 8
idlwave-class-arrow-face 15
idlwave-code-comment........................ 9

35

idlwave-complete-empty-string-as-lower-case

.. 14
idlwave-completion-case 14
idlwave-completion-fontify-classes 15
idlwave-completion-force-default-case 14
idlwave-completion-restore-window-

configuration.......................... 15
idlwave-completion-show-classes........... 15
idlwave-continuation-indent 8
idlwave-default-font-lock-items........... 10
idlwave-do-actions......................... 17
idlwave-doc-modifications-keyword......... 19
idlwave-doclib-end......................... 19
idlwave-doclib-start....................... 19
idlwave-end-offset.................... 8
idlwave-expand-generic-end................ 17
idlwave-extra-help-function............... 13
idlwave-file-header........................ 19
idlwave-fill-comment-line-only............. 9
idlwave-function-completion-adds-paren... 15
idlwave-hang-indent-regexp................. 9
idlwave-hanging-indent 9
idlwave-help-activate-links-agressively.. 13
idlwave-help-application.................. 20
idlwave-help-directory 13
idlwave-help-fontify-source-code.......... 13
idlwave-help-frame-parameters............. 13
idlwave-help-link-face 13
idlwave-help-source-try-header............ 13
idlwave-help-use-dedicated-frame.......... 13
idlwave-highlight-help-links-in-completion

.. 15
idlwave-keyword-completion-adds-equal 14
idlwave-libinfo-file....................... 30
idlwave-library-path....................... 30
idlwave-load-hook.......................... 20
idlwave-main-block-indent 8
idlwave-max-popup-menu-items.............. 13
idlwave-mode-hook.......................... 20
idlwave-no-change-comment 8
idlwave-pad-keyword........................ 18
idlwave-query-class........................ 15
idlwave-query-shell-for-routine-info 30
idlwave-reindent-end....................... 18
idlwave-reserved-word-upcase.............. 19
idlwave-resize-routine-help-window 11
idlwave-rinfo-max-source-lines............ 11
idlwave-scan-all-buffers-for-routine-info

.. 30
idlwave-shell-activate-prefix-keybindings

.. 24
idlwave-shell-arrows-do-history........... 23
idlwave-shell-automatic-start............. 21
idlwave-shell-breakpoint-face............. 25
idlwave-shell-command-line-options 21

idlwave-shell-debug-modifiers............. 24

Index

idlwave-shell-explicit-file-name.......... 21
idlwave-shell-expression-face............. 25
idlwave-shell-file-name-chars............. 23
idlwave-shell-frame-parameters............ 22
idlwave-shell-graphics-window-size 23
idlwave-shell-initial-commands............ 21
idlwave-shell-input-mode-spells........... 23
idlwave-shell-mark-breakpoints............ 25
idlwave-shell-mark-stop-line.............. 24
idlwave-shell-mode-hook 22
idlwave-shell-overlay-arrow............... 24
idlwave-shell-prefix-key 23
idlwave-shell-print-expression-function.. 26
idlwave-shell-process-name 21
idlwave-shell-prompt-pattern.............. 21
idlwave-shell-stop-line-face.............. 24
idlwave-shell-temp-pro-prefix............. 22
idlwave-shell-use-dedicated-frame......... 21
idlwave-shell-use-input-mode-magic 23
idlwave-shell-use-toolbar 24
idlwave-show-block......................... 17
idlwave-special-lib-alist.............. 11, 30
idlwave-split-line-string 9
idlwave-startup-message 20
idlwave-store-inquired-class.............. 15
idlwave-support-inheritance............... 15
idlwave-surround-by-blank 18
idlwave-system-directory 30
idlwave-timestamp-hook 19
idlwave-use-last-hang-indent 9
‘Imenu’, Emacs package 19
Indentation............ L 8
Indentation, of foreign code.................... 8
Input mode 23
Inserting keywords, from routine info.......... 11
Installation............ il 27
Installing online help 12, 27
Interactive Data Language..................... 1
Interface Definition Language.................. 1
Interview, with the maintainer................ 32
Introduction.......... o ol 1

K

Key bindings, in help application 13
Keybindings for debugging 23
Keyword completion 14
Keywords of a routine........................ 10
Killing autoloaded buffers 16

L

Library catalog.................. 30
Library scan............ 30
Line input mode (Shell) 23

Line splitting 9

36
LINKIMAGE, IDL routine 29
Load-path shadows 10, 31
M
M- 12
M-C-\ o 8
M-q oo 9
M-@BET) - ovveeeee e 9
M-(TAB) . o vooeee e e 14, 27
MacOS. ... 21, 30, 31
Magic spells, for input mode.................. 23
Maintainer, of IDLWAVE..................... 28
Major mode, idlwave-mode.................... 8
Major mode, idlwave-shell-mode 21
Method completion 14
Mixed case completion 14
Modification timestamp 19
Module source file 16
Motion commands 19
Mouse binding to print expressions............ 25
Multiply defined routines 11, 31
N
Nutshell, IDLWAVE ina 2
O
0BJ_NEW, special online help 12
Object method completion 14
Object methods 15
Old variables, renaming 27
OnlineHelp i 12
Online Help from the routine info buffer....... 11
Online Help in ‘*Completions*’ buffer......... 14
Online Help, in the shell...................... 22
Online Help, Installation.................. 12, 27
Operators, padding with spaces............... 18
P
Padding operators with spaces................ 18
Paragraphs, filling 8
Paragraphs, hanging 8
Perl program, to create ‘idlw-rinfo.el’....... 31
PRINT €XPressionsSovuvernernennenneen.. 25
Printing expressions, on calling stack.......... 25
Procedure definitions, jumping to............. 19
Procedure name completion 14
Program structure, moving through 19
Programs, compiling 24

Index

Q

Quick-Start 3

R

Renaming old variables....................... 27
RESOLVE_ROUTINE........., 16
Restrictions for expression printing............ 25
Routine definitions........................... 29
Routine definitions, multiple 11, 31
Routineinfo.......... 10
Routine info sources 29
Routine info, in the shell 22
Routine source file................. 16
Routine source information................... 10
ROUTINE_NAMES, IDL procedure........... 25
Routines, resolving............... 16

S

Scanning buffers for routine info........... 10, 29
Scanning the documentation.................. 31
Scrolling the ‘*Completions*’ window 14
self object, default class..................... 15
Shadows, load-path....................... 10, 31
Shell, basic commands 22
Shell, querying for routine info 10, 29
Shell, startingcoiiein ... 21
Source code, as online help 12
Source file, access from routine info 11
Source file, of a routine....................... 16
Sources of routine information................ 29

37
Space, around operators...................... 18
Speed, of online help......................... 12
Spells, magicc ... 23
Splitting, of lines 9
Starting the shell 21
Stepping ... ov v v 24
String splitting 9
Subprocess of Emacs, IDL.................... 21
Summary of important commands.............. 2
Syntax highlighting 10
T
Templates. ... 16
Thanks 28
Timestamp, in doc header. 19
Toolbar ... 23
Tutorial ... 3
Upcase, enforcing for reserved words 18
Updating routine info..................... 10, 29
Upgrading from old ‘idl.el’.................. 27
URL, homepage for IDLWAVE................ 27
Windowsoo i 21, 30, 31

